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The techniques of Kroger and Vink and Brebrick are extended to allow a calculation of the minimum 
extent of self-compensation by simple vacancies or interstitial atoms in heavily doped binary semiconductors. 
The resulting equations are applied to a series of compounds, and it is found that the degree of self-compensa
tion by singly ionizable vacancies varies from essentially complete in KC1 (all but ^10~9 of the impurities 
compensated) to practically none in GaAs (only <10~3 of the impurities compensated). The II-VI com
pounds occupy an intermediate position with about ^ 9 9 and 99.9% self-compensation in CdTe and ZnTe, 
respectively. These theoretical conductivity limitations are not sufficient to account for the experimental 
limitations found in, for example, w-ZnTe or ^-CdS. The above results are extended to include multiply 
ionizable vacancies, the ionization levels of which fall within the bandgap. I t is found that essentially 
complete self-compensation by a combination of singly and doubly ionized vacancies will occur in the higher 
bandgap II-VI compounds. As a consequence, for example, the Fermi level in ZnTe cannot be pushed closer 
to the bottom of the conduction band than half the energy separation between the second ionization level 
of the acceptor vacancy and the bottom of the conduction band. Some specific implications of the above 
calculations with respect to CdTe and GaAs are discussed. Finally, certain solubility effects (of impur
ities) related to stoichiometry and the above calculations are discussed. 

I. INTRODUCTION 

IT is well known that the introduction of electrically 
active impurities into a semiconductor host crystal 

induces the formation of electrically active "natural" 
defects (vacancies, interstitial atoms, etc.), which tend 
to at least partially compensate the electrical activity 
of the impurity. This phenomenon has been considered 
by a number of workers, particlarly in a review article 
by Kroger and Vink1 and, somewhat more rigorously 
and recently, by Brebrick.2'3 This self-compensation 
may be analyzed simply in terms of an energy balance 
equation, i.e., energy must be supplied by the crystal 
to produce the "excess" concentration of defect centers 
while energy is gained by the crystal by the interaction 
of the defects with the free carriers produced by the 
added impurity centers. Clearly, if the energy of defect 
formation is large compared to the energy gained by 
compensation, very little self-compensation will take 
place. On the other hand, if the energy of defect forma
tion is small compared to the energy gained by compen
sation, all free carriers will be compensated by the 
formation of defects and only insulating crystals will 
be accessible by equilibrium processes. 

The purpose of this paper is the calculation, in terms 
of the energy parameters of the host crystals, of the 
minimum extent of self-compensation by simple vacan
cies in a series of binary compounds, i.e., KC1, ZnTe, 
CdTe, and GaAs. Qualitatively, we expect to observe 
a trend in this series due to the fact that the more 

*This research was partially supported as part of Project 
DEFENDER under the joint sponsorship of the Advanced 
Research Projects Agency, the U. S. Office of Naval Research, 
and the Department of Defense. 

1 F. A. Kroger and H. J. Vink, in Solid State Physics, edited by 
F. Seitz and D. Turnbull (Academic Press Inc., New York, 
1956), Vol. I l l , p. 310. 

2 R. F. Brebrick, Phys. Chem. Solids 4, 190 (1958). 
3 R. F. Brebrick, Phys. Chem. Solids 18, 116 (1961). 

ionic compounds, e.g., KC1, have electronic bandgaps 
which are large compared to their cohesive energies 
while the reverse is true for the more covalent com
pounds, e.g., GaAs. Roughly speaking, the energy 
gained by the system upon "recombination" of a free 
carrier at a vacancy is expected to correlate with the 
bandgap, while the energy required to generate a va
cancy, i.e., the energy required to remove an atom from 
the lattice, is expected to correlate with the cohesive 
energy. 

The possibility of obtaining appreciable n- and ^>-type 
conductivity in the II-VI compounds, e.g., CdTe and 
ZnTe, is a question of increasing technological im
portance because of possible application toward an 
injection luminescence device operating in the visible 
region of the spectrum. These compounds appear to be 
an intermediate case requiring somewhat more careful 
analysis. 

In Sec. II , we calculate the degree of self-compensa
tion by simple singly ionizable acceptor vacancies in a 
binary semiconductor MN, into which we have intro
duced a large concentration of shallow donors, D. (A 
precisely analogous situation will exist for acceptors.) 
This calculation is based essentially upon the equation 
for charge neutrality and Fermi statistics as applied to 
a nondegenerate semiconductor.1-3 

In Sec. I l l , we apply the resulting equations to the 
series of compounds under consideration and find the 
expected trend in the results. Of particular interest are 
the results for CdTe and ZnTe, which indicate that the 
degree of self-compensation by singly ionizable vacancies 
calculated theoretically is not sufficient to account for 
the observed conductivity limitations in the II-VI 
compounds, ZnTe being a particularly appropriate 
example. 

In Sec. IV, we generalize the results of Sec. I I to in-
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elude multiply ionizable vacancies, in particular, doubly 
ionizable vacancies, such as might be expected to be 
important in the II-VI compounds. I t is demonstrated 
that multiply ionizable vacancies can be of critical 
importance in determining the degree of self-compensa
tion under certain circumstances, these circumstances 
being most probably appropriate to the II-VI com
pounds. In particular, under these circumstances, we 
find that the Fermi level cannot be pushed appreciably 
closer to the bottom of the conduction band than half 
the energy separation between the second ionization 
level of a simple doubly ionizable acceptor vacancy and 
the bottom of the conduction band. 

Some specific implications of Sees. I I and IV are 
discussed with respect to GaAs and CdTe in Sec. V. In 
particular, it is predicted that the concentration of 
simple vacancies in GaAs must be small, and certain 
experimental evidence supporting this view is cited. 
With respect to CdTe, it is pointed out that the assign
ment of a level much below the conduction band to the 
second ionization of a Cd vacancy cannot be correct. 

Finally, in Sec. VI, we discuss certain effects of vacan
cies on the solubility of impurities, in view of the above 
calculations. 

II. SINGLY IONIZABLE VACANCIES 

Let us consider a binary compound semiconductor, 
MN, into which we have introduced a large concentra
tion of donors, D, at the temperature T. The pressures 
of the various species in the vapor phase are fixed, par
ticularly the pressures of M(g) and N(g), pM and p^. 
The only defects in the host crystal which we consider 
are simple singly ionizable vacancies, an M atom vac
ancy being assumed to be an acceptor while an N atom 
vacancy is assumed to be a donor. For simplicity, we 
will analyze only the case of heavy doping in which the 
concentration of ionized donors, Z)+, is large compared 
to the concentration of ionized N vacancies, FJV+, or 
holes in the valence band, p. [The calculations can easily 
be extended to include VN+ by simply writing 
(£>++ VN+) in place of D* throughout.] 

I t will be shown in Sec. I l l that self-compensation 
by interstitial atoms rather than vacancies is essentially 
equivalent and leads to similar results. 

The charge conservation equation, which is sufficient 
to describe the system1-3 is given by 

D+=n+VM-, (1) 

where n is the concentration of electrons in the conduc
tion band and VM~ is the concentration of ionized M 
vacancies. The competition between n and VM" in 
maintaining charge neutrality is clearly the question 
at hand. 

The interactions between defects in equilibrium in a 
nondegenerate semiconductor are given by the equa

tions of Fermi statistics 

n=Nc exp(EF-Ec/kT), (2) 

VM-/VM=gM exp(EF-EA/kT), (3) 

where Nc is the density of states near the bottom of 
the conduction band (given in terms of the electronic 
effective mass and Z1), EF is the Fermi level, Ec is the 
energy at the bottom of the conduction band, VM is 
the concentration of neutral M vacancies, EA is the 
acceptor energy level associated with an M vacancy, 
and gM is a degeneracy factor (generally we assume 
gikf=2 for a singly ionizable level). An equivalent 
description is given by the mass action formalism.1-3 

nVM/NcVM-= 1/gM exp(EA~Ec/kT), (4) 

where the right-hand side of Eq. (4) is an equilibrium 
constant describing the ionization of an ionized M 
vacancy to yield a neutral M vacancy and an electron 
in the conduction band. 

Combining Eqs. (1) and (4), we obtain immediately 

»/ZH"=l/l+e, (5) 

Q=gMVM/Nc exp(Ec~EA)/kT^gMVM/Nc 

Xexp(Eg-EA')/kT, (6) 

where Eg is the electronic bandgap and EA
f is the ac

ceptor level of the M vacancy relative to the valence 
band. 

Equations (5) and (6) are our central result. All the 
quantities in Eq. (6) except VM, the concentration of 
neutral M vacancies," are generally known with suf
ficient accuracy (withf the possible exception of EA in 
some cases). We note that, except for the temperature, 
T, only VM is under experimental control. VM will be 
determined by the pressure of M^g) in the system, pM) 

which can take on a range of values. The connection 
between VM and pM is written1-3 

pMVM/NM=expASM/k exp(-AHM/kT), (7) 

where NM is the concentration of M sites in the lattice, 
and where the right-hand side of Eq. (7) is an equilib
rium constant referring to the process in which an atom 
of M is removed from the MN lattice and placed into 
the vapor, the pressure of M(g) being maintained at 
1 atm (standard state), leaving behind an M vacancy 
in the lattice. The quantities ASM and AHM are defined 
as the entropy and enthalpy of M vacancy formation, 
respectively. Note that we have not assumed that M(g) 

is the only species in the vapor phase but are simply 
using pM as a convenient measure of the chemical 
potential of M in the system. 

Inasmuch as we wish to calculate the minimum extent 
of self-compensation, we must estimate the minimum 
value of VM and, therefore, the maximum value of pM• 
Clearly pM must always be less than the value associated 
with the presence of a pure condensed phase of M 
(generally Mw in cases of interest).3 For temperatures 
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several hundred degrees centigrade below the maximum 
melting point of MN, or lower, the maximum achievable 
value of pM is fairly well approximated by that associ
ated with M(j), ^Mvap, for most cases of interest. We 
will confine our calculations to such temperatures that 
pM=:pMv&p and simply point out that the results will 
represent a lower bound to the degree of self-compensa
tion at other temperatures where PM<PM™P, e.g., the 
maximum melting point. We write, 

M v a p = expA5M
v a p /^ e x p ( - AHM

vap/kT), (8) 

and obtain, finally, from Eqs. (6)-(8), 

kTlnQ™in= Eg-EA
r - AHM+ AHM™P 

+ T(ASM-ASM™»)+kTln(gMNM/Nc). (9) 

Thus, with Eqs. (5) and (9) we can calculate the 
maximum relative concentration of free carriers that we 
can introduce into MN(8) at the temperature T. If T 
is sufficiently large, these carriers will be equal in 
concentration to the "uncompensated" donor impuri
ties present. If the temperature at which we measure 
the conductivity is much less than T, some of these 
carriers may "freeze out." The extent of this "freeze-
out" is determined largely by the energy level associated 
with the donor impurity (for the case of singly ionizable 
vacancies only). We will not be concerned with this 
"impurity limitation" on the accessable carrier con
centration and conductivity but merely state that Eqs. 
(5) and (9) allow us to calculate the maximum relative 
concentration of uncompensated shallow impurities 
(virtually all ionized at temperature T) that can be 
introduced into MN(S). 

III. CALCULATION OF RESULTS; KC1, 
ZnTe, CdTe, AND GaAs 

We now apply Eqs. (5) and (9) to ^-KCl, ^-ZnTe, 
n- and ^-CdTe, and w-GaAs. The energy bandgaps, 
Eg, are available in the literature.4-9 The energy levels 
of the compensating vacancies, EA are available for 
p-KCl (F center),10 ^-ZnTe,11 ^-CdTe,8 and ^-CdTe.8-12 

No data are available on EA in GaAs and we will 
simply assume EA = 0 in this case to put an upper bound 
on the extent of self-compensation. 

The enthalpy of compensating vacancy formation, 
AHM, is available as such only for w-CdTe.8 The en
thalpy of formation of interstitial Cd atoms in ^-CdTe 

4 J. E. Eby, K. J. Teegarden, and D. B. Dutton, Phys. Rev. 
116, 1099 (1959). 

* R. H. Bube and E. L. Lind, Phys. Rev. 105, 1711 (1957). 
6 D. Larach, R. E. Shrader, and C. F. Stocker, Phys. Rev. 108, 

587 (1957). 
7 H. Tubota and H. Suzuki, J. Phys. Soc. Japan 16, 1038 (1961). 
8 D. DeNobel, thesis, University of Leiden, 1958 (unpublished). 
9 M. D. Sturge, Phys. Rev. 127, 768 (1962). 
10 J. C. Gravitt, G. E. Gross, D. K. Benson, and A. B. Scott, 

J. Chem. Phys. 37, 2783 (1962). 
" M. Aven and B. Segall, Phys. Rev. 130, 81 (1963). 
12 M. R. Lorenz and B. Segall, Phys. Letters 7, 18 (1963). 

is reported,8 however, according to the equation 

Icd/Ncdpcd = exp-AScdI/k expAHCdJ/kT, (10) 

where Jca is the concentration of interstitial Cd atoms. 
I t is, in practice, impossible to distinguish between 
interstitial Cd atoms and Te vacancies by electrical 
measurements.1 If we reinterpret the data in terms of 
Te vacancies and use Eq. (7) (with M=Te) in place of 
Eq. (10), it is easy to demonstrate that the "equivalent" 
enthalpy of Te vacancy formation is given as 

A#Te=A#CdTe-A#Cd J , (11) 

where A#cdTe is the standard molar enthalpy change 
for the reaction 

CdTe ( s ) = Cd ( f f )+Te ( f f ) . (12) 

AZ?cdTe is essentially twice the cohesive energy per 
gram-atom of CdTe(S) and is available in the litera
ture.13,14 On the basis of such reinterpretation, we have 
obtained A#Te for the calculation appropriate to 
^>-CdTe. I t is apparent that, for our purposes, no signi
ficant difference exists between interstitial atoms and 
vacancies and that the available data can always be 
interpreted without error in terms of vacancies, as 
above. 

The enthalpy of vacancy (F center) formation in 
KC1 has not been reported. Data are available, however, 
as to the concentration of F centers as a function of 
potassium pressure, pK, at one temperature (697°C).15 

In particular, the concentration of F centers is reported 
to be proportional to pK0'85, rather than the expected 
linear dependence. We may handle these data in several 
ways, with slight variation in the calculated results. 
Firstly, we arrive at the minimum value of Vci by 
extrapolating the reported data to a value of pK 
consistent with the highest possible value of pci 
(^civap), an extrapolation of perhaps a factor of 1020, 
and use Eq. (6). Secondly, we may assume a linear de
pendence and carry out the same extrapolation with a 
resultant difference of a factor of 103 (fewer vacancies). 
Finally, in a fashion equivalent to the linear extrapola
tion, we may estimate the standard molar entropy 
change appropriate to the removal of a CI atom to the 
vapor as half the standard molar entropy change of the 
reaction. 

KC1(.) = K ( . ) + C 1 ( , ) , (13) 

plus a small contribution due to the presence of the 
vacancies,2-3,16 which we somewhat arbitrarily estimate 
as ~ 4 e.u.16 On the basis of our estimate of the total 
entropy change, we use Eq. (7) and the data mentioned 
above to calculate AHci> Use of this calculated value in 
Eq. (9) leads, as expected, to essentially the same result 

13 O. Kubaschewski and E. L. Evans, Metallurgical Thermo
chemistry (Pergamon Press, New York, 1958). 

14 D. R. Stull and G. C. Sinke, Advan. Chem. Ser. 18 (1956). 
15 C. Z. van Doom, Phillips Res. Rept. Suppl. 4, 23 (1962). 
16 R. A. Swalin, Phys. Chem. Solids 18, 290 (1961). 



A1076 G. M A N D E L 

as the linear extrapolation, and is probably the most 
reliable method. 

No thermodynamic data on vacancy formation is 
available for either ZnTe or GaAs. We may, however, 
follow Swalin16 and write 

AHM^AHMN-Erc^2EG0}l-ET, (14) 

where AHMN is the standard molar enthalpy change for 
the reaction 

MNW=MW+NW. (15) 

ECOh is the cohesive energy per gram-atom and Er is a 
"relaxation" energy associated with the vacancy. Eq. 
(14) is based on the assumption of constancy of bond 
energy and may be expected to apply to covalent 
crystals. An equation of the same form can actually 
also be derived for ionic crystals.17 If we put the data 
for ^-CdTe8 into the form of Eq. (14), we find ET/AHMN 
= 0.24. Similarly, for Ge,15 Er/AHMN = ET/2Eooh=0.19. 
We will assume that Eq. (14) applies to both ZnTe and 
GaAs. Further, we will assume that EV/AHMN has the 
same value for ZnTe as for CdTe. For GaAs, we will 
assume a value of EY/AHMN midway between that of 
CdTe and Ge, i.e., Er/AHMN^Q-'ZI, and use the data 
of A#GaAs .

18 

The enthalpies and entropies of vaporization [Eq. 
(8)], are available for all the elements involved.14 

For each case, we take the temperature, T, to be 
several hundred degrees centigrade below the maximum 
melting point of the host crystal in order that the 
maximum value of pM be reasonably accurately de
scribed by pMyap> 

The entropies of vacancy formation, ASM, are gener
ally unknown. The over-all entropy term in Eq. (9), 
(ASM— ASM™®), is clearly the standard molar entropy 
change that occurs upon transfer of one mole of M atoms 
from MN(S) to Mm, leaving M vacancies in the crystal. 
This must be given by approximately minus half the 
standard molar entropy of formation of MN(8) from 
the solid elements (^2 e.u.) plus the standard molar 
entropy of fusion of M(S) ( ~ 3 e.u. for most elements) 
plus a contribution due to the "excess" entropy of the 
vacancies2,3-16 (which is ^ 4 e.u.).15 We therefore take 
(ASM—ASjifvap) as ^ 9 e.u. in each case. 

The degeneracy factor, gM, is taken as 2 for all cases 
and the concentration of available M sites, NM, "is 
calculated from the densities of the host crystals, which 
are easily available. 

The density of states, Nc, is calculated from the tem
perature, T, and the appropriate effective mass, w*, 
which is available for ^-CdTe,19-20-8 p-CdTe8 (with 

17 N. F. Mott and M. J. Littleton, Trans. Faraday Soc. 34, 485 
(1938). 

18 V. J. Lyons and V. J. Silvestri, J. Phys. Chem. 65, 1275 
(1961). 

19 D. T. F. Marple, Phys. Rev. 129, 2466 (1963). 
20 B. Segall, M. R. Lorenz, and R. E. Halstead, Phys. Rev. 129, 

2471 (1963). 

some uncertainty) and 72-GaAs.21 We will take w* for 
^-ZnTe as identical to that of ^-CdTe and that for 
p-KC\ as equal to the free-electron mass. 

Finally, the only implicit temperature dependence in 
Eq. (9) that we consider is that of the bandgap, E0. 
Estimates of this dependence are available for CdTe8,22 

and CdAs.22 The value for ZnTe is interpolated from 
data for CdTe, CdSe, and ZnSe.22 The value of (6Eg/dT) 
for KC1 is arbitrarily estimated as —10~3 eV/°C. 

The inputs for Eq. (9) are given in Table I, excluding 
(ASM-ASM

Yap) = 9 e.u. = 3.9XlO-4 eV/°C and gM = 2. 
The results of the calculation based on Eq. (9) and 

the data in Table I are presented in Table II , along with 
data on EQ and Ecoh. I t is clear from the above discussion 
relating to the data in Table I that the results in the 
second and third columns in Table I I are reliable only 
as to order of magnitude. Nevertheless, we may draw 
certain firm conclusions from these results: 

1. There does exist a self-compensation "boundary" 
such that certain compounds, falling beyond the 
"boundary," cannot be doped by any equilibrium pro
cess to have appreciable electronic conductivity, e.g., 
the alkali halides. A rough rule of thumb for determining 
the position of the self-compensation "boundary" is 
given by the ratio of the bandgap, EQ, to the cohesive 
energy per gram-atom, ZWiJ essentially complete self-
compensation occurring for values of this ratio much 
above unity while little self-compensation occurs for 
values below 0.5. The expected trend from ionic to 
covalent compounds is observed. 

2. The II-VI compounds constitute a class in which 
considerable self-compensation may be expected to 
occur (Eg/Ecoh— 1). Nevertheless, the calculated degree 
of self-compensation by singly ionizable vacancies for 
these compounds is not sufficient to explain the well-
known difficulty of obtaining, for example, appreciable 
conductivity in #-ZnTe or ^-CdS. Similar results are 
expected for compensation by simple singly ionizable 
interstitial atoms [see discussion of data in Table I for 
^-CdTe and Eq. (14)]. We conclude, therefore, that 
some other limitation on the accessible carrier concen
tration and conductivity in II-VI compounds must be 
involved. There may, of course, be impurity limitations 
related to solubility or position of energy levels within 
the electronic bandgap. There may also be other 
"natural defects" involved, e.g., impurity-vacancy 
pairs, etc. A particular possibility that we will consider 
in more detail is the presence of doubly ionizable va
cancies, of which both ionization levels fall within the 
electronic bandgap. 

IV. MULTIPLY IONIZABLE VACANCIES 

In the general case, we designate the concentration 
of M vacancies, which have been ionized to a charge of 

21C. Hilsum and A. C. Rose-Innes, Semiconducting III-V 
Compounds (Pergamon Press, New York, 1961). 

22 R. H. Bube, Photoconductivity of Solids (John Wiley & Sons, 
Inc., New York, 1960), p. 237. 
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Compound 

p-KCl 
n-ZnTe 
w-CdTe 
p-CdTe 
w-GaAs 

T (°K) 

970 
1500 
1250 
1250 
1250 

E0(T) 
(eV) 

8.03a-c 

1.36d'e>a 

1.02f 

1.02' 
0.95^e 

TABLE I. 

(eV) 

2.40h 

0.051 

0.15f 

0.02f 

0.00a 

Inputs for Eq. 

AHM 
(eV) 

6.20a 

3.43a 

3.20f 

3.37a 

5.81a-i 

(9). 

AHM
vap 

(298°K) (eV) 

1.36b'm 

1.21m 

1.07m 

1.86m 

2.76m 

NM (cm"') 

1.38X1022 
1.83X1022 
1.55X1022 
1.55X1022 
1.01X1022 

Ne (cm-3) 

1.50X1020* 
1.03X10i9a 

7.76X1018 ' 
S ^ X I O 1 9 ' ^ 1 

4.12X1018 

» See text in Sec. III. 
b T is above the critical temperature of Ch so that Chos) is the condensed phase of interest rather than Cla(i). We will neglect the small effect of this 

however. 
c See Ref. 4. e See Ref. 20. e See Ref. 9. i See Ref. 11. k See Ref. 17. m See Ref. 13. 
d See Refs. 5-7. * See Ref. 8. * See Ref. 10. i See Ref. 16. J See Ref. 18. 

TABLE II. Results from Eq. (9). 

Compound 

p-KC\ 
w-ZnTe 
n-CdTe 
^-CdTe 
w-GaAs 
CdS 
ZnS 

• See Ref. 4. 
b See Refs. 5-7. 

/ n \ max / J, \ max 

(—) or (±-\ 
(3calcmin \D+/ \v4-/calc 

2.12X108 4.71X10"9 

3.09X102 3.22X10-3 
3.23X10 3.00X10-2 
8.70X102 1.15X10-3 
1.70X10-3 0.998 

o See Ref. 8. e See Refs. 12 and 13. 
d See Ref. 9. * See Refs. 16 and 13. 

Eg (298°K) 
(eV) 

8.70a 

2.20b 

1.50c 

1.50° 
1.43d 

AHMN = 2Ecoh. 
(eV) 

6.70e 

4.510 

4.20e 

4.20« 
7.35* 

•&g/£Jcoh. 

2.61 
0.97 
0.72 
0.71 
0.39 
0.94 
1.22 

- t as VM l and follow Sec. II in writing a charge 
neutrality equation, 

n+ZiVM-i = D+, (16) 

where N is the highest charge state to fall within the 
bandgap. We also write an equilibrium constant for 
ionization of a vacancy in the ith charge state, 

nVM-^/NcVM-^gi-i/gi exp(EAi-Ec/kT), (17) 

where gi is a degeneracy factor and EAi is an energy 
level describing the ith charge state of the vacancy. As 
before, Ec is the energy at the bottom of the conduction 
band. It follows from use of Eq. (17) in Eq. (16) that 
Eq. (5) still applies, with Q given by 

Q=Qi i+Lfe /g i ) 
/ n y 
\NJ 

where 

x « p [ ( i / * D E (Ec-EAJn 

Qi=giVM/Nc exp(Ec-EAl)/kT, 

(18) 

(19) 

as in Eq. (6). 
For the II-VI compounds, it is believed that iV=2 

and we write, for these compounds, 

Q = Qi{l+(2g2/gl)(n/Nc) zxp(Ec-EA2/kT)}. (20) 

Certain general features of Eqs. (18) and (20) should 
be noted. We see that the effect of the second ionization 
level of the vacancy only becomes significant in Eq. (20) 
if the doping level is such that the Fermi level rises above 
the second ionization energy level [see Eq. (2)~|. If we 
attempt to dope the host crystal so heavily that the 
Fermi level does rise above the second ionization level 
of the acceptor vacancy, we see from Eqs. (1) and (20) 
that the situation is soon reached in which 

n/Nc^expiEF-Ej/kT^&Dyig&Ncyi* 
Xexp(EA2-Ec/2kT). (21) 

It is clear that <2î >l for the higher bandgap II-VI com
pounds (see Table II). Further (giD+/2g2Q1Nc)

1/2<l. 
It follows that the Fermi level in the II-VI compounds 
cannot be pushed closer to the bottom of the conduction 
band than half the energy separation between the 
second ionization level of the acceptor vacancy and the 
bottom of the conduction band. In other words, shallow 
impurities will be completely compensated by a combi
nation of singly and doubly ionized vacancies in a 
II-VI compound if the second ionization level of the 
compensating vacancy falls within the bandgap. 

Even if the Fermi level does not rise above the 
second ionization level of the acceptor vacancies, these 
levels will still contribute to the temperature dependence 
of the carrier concentration. If the donor impurities 
are sufficiently shallow, the position of these second 
ionization levels will entirely determine this tempera
ture dependence. However, as long as <2î >l, "freeze-
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out" of carriers onto these levels cannot push the Fermi 
level higher than the maximum value discussed above. 
Complete compensation of impurities by a combination 
of singly and doubly ionized vacancies will then always 
occur as long as the energy level of the added donor 
impurities is shallower (closer to the conduction band) 
than the second ionization level of the vacancies. If the 
energy level of the donor impurity is sufficiently deep, 
the donors will not be completely compensated, but 
cannot then contribute appreciable conductivity. 

V. SPECIFIC IMPLICATIONS: GaAs, CdTe 

The magnitude of the concentrations of vacancies in 
GaAs is of interest because it has been suggested that 
the concentration of some natural defects can be quite 
high (~1019/cm3).23 The estimated value of the energy 
of vacancy formation used in Sec. I l l , however, leads 
to the conclusion that the total concentration of simple 
vacancies, neutral or ionized, must be low. In particular, 
the maximum concentration of neutral Ga vacancies 
(under the maximum pressure of As) is calculated to be 
~ 1014/cm3. If the Ga vacancies were shallow acceptors, 
the total concentration of Ga vacancies could hardly 
exceed 1018/cm3 in a crystal of GaAs grown from an 
As-rich melt and doped to be degenerately ^-type (at 
the growth or equilibration temperature). This view is 
supported by the well-known fact that GaAs can be 
prepared either n- or ^-type at the 1017/cm3 level 
without appreciable compensation. Thus under "nor
mal" preparation conditions, the concentrations of 
electrically active natural defects must be low, i.e., 
<1015/cm3. 

As regards CdTe, it has been suggested that the 
second ionization level of the acceptor Cd vacancy is 
0.6 eV below the conduction band.8,12 I t is, however, well 
known that CdTe can be doped degenerately Tz-type.8,20 

From the results of Sec. IV, it is clear that this contra
dicts the assignment of the 0.6-eV level to the second 
ionization level of the isolated Cd vacancy. This con
clusion does not depend on the results of Sec. I l l but 
simply requires that Qi not be much smaller than unity. 
The experimental observation that substantial self-
compensation is observed in ^-CdTe8 demonstrates that 
this requirement is met. There is, in fact, some support 
for the estimated energy of vacancy formation in CdTe 
used in Sec. I l l in that large concentrations of singly 
ionized Cd vacancies can be introduced into p-CdTe.12 

I t would thus appear that the 0.6-eV level must be 
assigned to some other center, possibly some complex 
involving a doubly ionized Cd vacancy.12 The second 
ionization level of the isolated Cd vacancy in CdTe 
must, in fact, be much closer to the conduction band 
and may be the level recently observed by Lorenz 

23 J. Blanc, R. H. Bube, and L. R. Weisberg, Phys. Rev. Letters 
9, 252 (1962). 

et al.M'25 in CdTe and some other II-VI compounds (all 
of which can be doped heavily n type). The exclusion of 
ZnTe (which apparently cannot be doped n type) from 
this group is significant. 

VI. SOLUBILITY EFFECTS 

Inasmuch as an impurity must reside on either an M 
site or an N site in MN(S) ,we expect that the solubility 
of impurities in binary compounds must, in general, be a 
function of the stoichiometry of the system, i.e., the 
concentration of vacancies. In Sec. II , we have a situa
tion in which the concentration of added donor impuri
ties in MN(S) is held fixed. Under these circumstances, 
it was pointed out, the maximum relative amount of 
uncompensated donor impurities will occur in a system 
in which the concentration of compensating acceptor 
vacancies is a minimum. What is generally held constant 
in the laboratory, however, is, to a first approximation, 
the thermodynamic activity of the added donor impuri
ties. As a consequence of the dependence of the solu
bility of the impurities on the vacancy concentration, 
it is not necessarily true, then, that the maximum total 
concentration of uncompensated impurities will occur 
in a system in which the concentration of acceptor 
vacancies is a minimum. 

For, example, let us consider a compound semicon
ductor MN(S), which is brought into equilibrium at the 
temperature T with a total constant activity of added 
donor impurities, i.e., the partial pressure of atomic D(g) 

is held constant at a value p&. These impurities are 
presumed to reside on M sites in the host crystal for 
this system. The pressure of M(g) is again designated 
pM and we assume, as in Sec. I I , that only singly ioniz-
able acceptor M vacancies need be taken into account. 

The concentration of neutral donors, D, in the host 
crystal is determined by the equilibrium constant.1-3 

D/pDVM=K(T), (22) 

which refers to the process in which an atom of D(g) 

"fills" an M vacancy to yield a neutral donor impurity 
in the lattice. 

The concentration of ionized impurity atoms in the 
crystal, D+, is determined by the equilibrium constant 
for the ionization of a neutral impurity to yield a free 
electron. 

nD+/NcD= (l/gD) exp(ED-Ec/kT), (23) 

where gn is a degeneracy factor and ED is the energy 
level associated with the donor impurity. 

I t follows, from Eqs. (5) and (23), that 

n2 = [l/(l+Q)l(NJ>/gD) exp(ED-Ee)/kT). (24) 

At constant pn and T, D is proportional to VM ac
cording to Eq. (22). On the other hand, according to 

24 M. R. Lorenz and H. H. Woodbury, Phys. Rev. Letters 10, 
215 (1963). 

25 M. R. Lorenz, M. Aven, and H. H. Woodbury, Phys. Rev. 
132, 143 (1963). 
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Eq. (6), Q is also proportional to Vi at constant T. We 
see, therefore, that the total concentration of free 
carriers, n, is a maximum when VM is a maximum^ 
despite the fact that the relative amount of uncompen
sated donors, n/D+, is a minimum under the same condi
tions. When (K2>1, as in the II-VI compounds (see Sec. 
Ill), the total concentration of free carriers is essentially 
independent of VM- Thus, as pM is varied in these sys-

I. INTRODUCTION 

IN recent years, a fairly detailed understanding of the 
F center in alkali halides has been achieved by con

certed theoretical and experimental studies of its elec
tronic structure.1 The F center consists of an electron 
bound to a negative-ion vacancy, and is the simplest 
of several "electron" color centers such as the M, R, 
and F' centers.2 A series of "hole" color centers also 
exists (Vi,H,Vk); these are characterized by optical 
absorption bands lying at somewhat higher energies 
than those of electron centers, are generally stable only 
at low temperatures, and must be formed by high-energy 
irradiation. The best understood of these, a center 
which consists of a self-trapped hole, has been studied 

* Supported in part by the National Science Foundation and in 
part by a Grant (62-145) from the U. S. Air Force Office of 
Scientific Research. 

1 See, for example, the review article by B. S. Gourary and 
F. J. Adrian in Solid State Physics edited by F. Seitz and D. 
Turnbull (Academic Press Inc., New York, 1960), Vol. 10. 

2 See, for example, J. H. Schulman and W. D. Compton, Color 
Centers in Solids (Pergamon Press, Inc., New York, 1963). 

terns, only the concentration of compensated donors 
varies. 

It should be noted that the situation is entirely dif
ferent if the donor impurities reside on N sites rather 
than M sites. Under such circumstances, the solubility 
of the impurities is maximized and the degree of self-
compensation minimized when VM is minimized, i.e., 
when pM is maximized. 

elaborately by Castner and Kanzig.3 Electron resonance 
data have conclusively shown that this center is not 
associated with a vacancy but instead resembles a 
negative halogen molecule-ion with a hole shared be
tween two adjacent negative ions. Two previous theo
retical attempts4,5 have been made to explain the 
stability of this self-trapped holes. Yamashita4 tried to 
calculate the energy of the hole in KC1 as a function 
of the displacement of the Cl~ ions which trap it. He 
could not obtain a minimum in the energy as a function 
of this displacement but suggested that the repulsion 
between the core electrons of the Cl~ ions, which he 
had neglected, might provide a minimum in the energy 
curve at half the usual distance between the ions in the 
crystal. A subsequent attempt by Nettel5 gave the 
result that the energy of a hole trapped as a CI2" ion 
in the crystal had higher energy than a chlorine atom 

3 T . G. Castner and W. Kanzig, Phys. Chem. Solids 3, 178 
(1957); Nuovo Cimento Suppl. 7, 612 (1958). 

4 J. Yamashita, work at the University of Illinois, 1958 
(unpublished). 

« S. J. Nettel, Phys. Rev. 121, 425 (1961). 
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Using a semiphenomenological method, the energy and wave functions of a self-trapped hole (Vk center) 
in LiF are obtained as a function of the separation between the two F~ ions at which the hole is assumed 
trapped. The lattice distortion energy due to the changes in Madelung, repulsive, and polarization energies 
is calculated as a function of the totally symmetric displacement of the two participating F~ ions and six 
positive ions adjacent to the F~ ions. This lattice energy is combined with the calculated energy for the 
F2~ molecule to obtain the total energy as a function of the distance between the participating F~ ions for 
both the symmetric (Eg) and antisymmetric (2Jtt) states of the hole on the Vk center. Only the energy curve 
for the ground (2«) state exhibits a minimum in the expected region of F~-ion separation. From the resulting 
configurational coordinate curves, the optical absorption energy and width are computed and found to be 
in order-of-magnitude agreement with experiment. Computed values of the experimentally known isotropic 
and anisotropic hyperfine constants are used to assess the validity of our molecular wave functions, which 
were obtained in a one-electron approximation. 


